a2 United States Patent

US009286275B2

(10) Patent No.: US 9,286,275 B2

Khan (45) Date of Patent: Mar. 15, 2016
(54) SYSTEM AND METHOD FOR 7,080,314 BL* 7/2006 Garofalakis ctal. 715/236
7,134,072 B1* 11/2006 Lovettetal. 715/513

AUTOMATICALLY GENERATING XML
SCHEMA FOR VALIDATING XML INPUT
DOCUMENTS

(75) Inventor: Ayub S. Khan, Santa Clara, CA (US)

(73) Assignee: Oracle America, Inc., Redwood City,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1494 days.

(21) Appl. No.: 10/925,350

(22) Filed: Aug. 23,2004

(65) Prior Publication Data
US 2006/0041838 Al Feb. 23, 2006

(51) Int.CL

GOGF 17/00 (2006.01)
GOGF 17/22 (2006.01)
GOGF 1730 (2006.01)
GOGF 17727 (2006.01)
(52) US.CL
CPC ... GOGF 17/227 (2013.01); GOGF 17/2247

(2013.01); GOGF 17/2725 (2013.01); GO6F
17/30908 (2013.01); GOGF 17/30914 (2013.01)
(58) Field of Classification Search
CPC ..ccvvvvrerinenn GOG6F 17/2247; GOG6F 17/30914
USPC ittt 715/513, 234
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,963,875 B2* 11/2005 Mooreetal. 707/101
6,990,632 B2* 1/2006 Rothchilleretal. . 715/212
6,993,714 B2* 1/2006 Kaleretal. 715/513

300

7,158,990 B1* 1/2007 Guo et al.
2002/0143727 Al 10/2002 Huetal.

2003/0149934 Al* 82003 Wordenccooeev. 715/513
2004/0268234 Al* 12/2004 Sampathkumar etal. ... 715/513
2005/0055676 Al* 3/2005 Bohlmannetal. ... 717/136

FOREIGN PATENT DOCUMENTS

WO 03/060758 A3 7/2003
OTHER PUBLICATIONS

Garofalakis et al., “XTRACT: A System for Extracting Document
Type Descriptors from XML Documents”, MOD 2000, copyright
ACM 2000, p. 165-176.*

Chidlovskii, et al., “Schema Extraction from XML: A Grammatical
Inference Approach”, 8th International Workshop on Knowledge
Representation meets Databases, published Sep. 2001, p. 1-16.*

(Continued)

Primary Examiner — Amelia Tapp
(74) Attorney, Agent, or Firm — Polsinelli PC

(57) ABSTRACT

Techniques, systems and apparatus for automatically gener-
ating schema using an initial documents constructed in an
XML compatible format are disclosed. A method involves
providing an initial XML document that and analyzing the
XML document to identify the XML data structures in the
document and generating a data framework that corresponds
to the data structure of the XML document. The data items of
the initial XML document are analyzed to determine data
constraints based on the data items of the initial XML.
Schema are then generated based on the data framework
generated and the data constraints determined from the raw
xml data. These principles can be implemented as software
operating on a computer system, as a computer module, as a
computer program product and as a series of related devices
and products.

18 Claims, 16 Drawing Sheets

providing an initia) XML
formattad document 301
analyzing the XML

308~ document to determine
the structure of the
document

analyzing the XML
document to identify the [~ 311
data items and properties

¥

generating a framewark

305—~| of data clements

associated with the initial
XML documents

S S setof data

generating
an XML

schema

generating a set of data 313

a7

§

providing an
externally
generated

canstraints

choosing a
proferred set
of constraints

US 9,286,275 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Takase, et al., “XML Digital Signature System Independent of Exist-
ing Applications” Proceedings of the 2002 Symposium on Applica-
tions and the Internet , copyright 2002, IEEE, p. 1-8.*

Dushay, et al., “Analyzing Metadata for Effective Use and Re-Use”,
issued Oct. 2003, Dublin Core Metadata Initiative, p. 1-10.*
Chidlovskii, etal., “Using Regular Tree Automata as XML schemas”,
copyright 2000, IEEE, p. 1-10.*

Rodriguez-Gianolli, et al., “A Semantic Approach to XML-based
Data Integration”, ER 2001, LNCS 2224, pp. 117-132, 2001.*
Jingkun Hu, “Visual Modeling of XML Constraints Based on a New
Extensible Constraint Markup Language”, School of Computer Sci-
ence and Information Systems, Pace University, 2004, pp. 1-118.
William M. Shui and Raymond K. Wong, “Application of XML
Schema and Active Rules System in Management and Integration of
Heterogeneous Biological Data”, Proceedings of the Third IEEE
Symposium on Biolnformatics and BioEngineering, 2003, 8 pages.
International Search Report, dated Nov. 4, 2005.

* cited by examiner

U.S. Patent Mar. 15, 2016 Sheet 1 of 16 US 9,286,275 B2

101
xml 103 T 102
105
A
100
< ™ FIG. 1
200 xml
o 201
210
™~
xml default | ~214
212] structural | | ! constraint
analyzer generator
2140’ 2140
oo
|
2120~ ! l +
|
i 216
|
|
v V¥
xml schema
218 | generator

220 xsd Fl G 2

U.S. Patent Mar. 15, 2016 Sheet 2 of 16 US 9,286,275 B2
300 é‘
providing an initial XML
formatted document | 301
analyzing the XML analyzing the XML
303 —| document to determine document to identify the [~ 311
the structure of the data i d .
document ata items and properties
generating a framework .
305 —_ of data elements generact(l)nngsta:asiﬁ:sof data i~ 313
associated with the initial
XML documents
317
315 S
-~ 307 =
] providing an

316 externally

\ : generated

O S i set of data

constraints

i

choosing a

preferred set
of constraints

320

325 —| generating
an XML
schema

330

FIG. 3

T~ 321

U.S. Patent Mar. 15, 2016 Sheet 3 of 16 US 9,286,275 B2

START

XML file

|

reading the |

401

generating root
element for the
structure

403

l

determining data
information for
each first sibling

407

'

outputting data
framework
corresponding with

initial XML file

data structure of the

409
a

FIG. 4

U.S. Patent Mar. 15, 2016 Sheet 4 of 16 US 9,286,275 B2

Structure Analyzer XML Stylesheet

<xsl:stylesheet xmins:xsl=hitp.//www.w3.0rg/1999/XSL/Transform version="1.0">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
<xsl:call-template name="process-all-category-children">
<xst:with-param name="children" select="*"/>
</xsl:call-template>
</xsl:template>

<xsl:template name="process-all-category-children">
<xsl:param name="children"/>

<xsl:if test="count($children) > 0">
<xslvariable name="first-child" select="local-name($children[1])"/>

<xsl:call-template name="process-like-siblings">
<xsl:with-param name="siblings" select="children[local-name(.) = $first-child]"/>
</xsl:call-template>

<xsl.call-template name="process-all-category-children">
<xsl:with-param name="children" select="$children[local-name(.) = $first-child]"/>
</xsl:call-template>
</xsl:if>
</xsl.template>

<l-- Pickup only the first sibling from the set of children for a node—>
<xsl:template name="process-like-siblings">
<xsl:param name="siblings"/>

<xsl:variable name="category-name" select="$siblings[1)/@name"/>
<xsl:variable name="el-name" select="local-name($siblings[1])"/>

<xsl:element name="{$el-name)">

<xsl:for-each select="$siblings[1)/@*">
<xsl;variable name="attr-name" select="."/>
<xsl:attribute name="{local-name()}"><xsl:value-of select="$attr-name"/></xsl.attribute>

<xsl:attribute name="XSG_attrcount_{local-name()}"><xs!:value-of
select="count($siblings/@™*)"/></xsl:attribute>
</xsl.for-each>

<xsl:variable name="count"
select="count($siblings[1]/../*[local-name() =
local-name($siblings[1])])"/>

<xsl:variable name="child_count" select="count($siblings/*)"/>

<xsl:if test="$child_count = 0">

FIG. 5.1

U.S. Patent Mar. 15, 2016 Sheet 5 of 16 US 9,286,275 B2

<xsl:attribute name="XSG_val"><xsl:value-of select="8siblings[1]"/></xsl.attribute>
</xsl.if>

<xsl:attribute name="XSG_count"><xsl:value-of
select="$count"/></xs|:attribute>

<xsl:call-template name="process-all-category-children">
<xsl:with-param name="children" select="$siblings/*"/>
</xsl.call-template>

</xsl.element>
</xsl:template>

</xsl:stylesheet>

FIG. 5.2

U.S. Patent Mar. 15, 2016 Sheet 6 of 16 US 9,286,275 B2

START

601

~ reading the XML file
603 _~ generating root element for the structure
605 _~ identifying child elements of the XML file

!

607__~] generating <namespace> elements related to each data
item of the initial XML file

Y

generating <constraint> elements related to each data item
of the initial XML file

v

611__~| processing data items to generate constraint information
concerning each data item

v

613 _~ OPTIONAL
generating <datatype> element for a constraint element

v

OPTIONAL
615 _~ generating “type” information for insertion into the
<datatype> element

Y

617 _~| repeating process for each data item in the initial XML file

v

619 __~ generating a default constraint XML document that
includes generated constraint information

609

FIG. 6

U.S. Patent Mar. 15, 2016 Sheet 7 of 16 US 9,286,275 B2

Example Default Constraint Generator XML Style Sheet

> <xsl:stylesheet xmins:xsi="http://iwww.w3.0rg/1999/XSL/Transform"
xmins:java="http://xml.apache.org/xalan/java"

version="1.0">

<xsl:output method="xml" indent="yes"/>

<l-- root node-->
<xsl:template match="/">
<root>
<namespaces>
<namespace name="xmins:jaxb"
value="http://java.sun.com/xml/ns/jaxb"/>
</namespaces>

<constraints>
<xsl:for-each select=""">

<xsl:variable name="el-name" select="local-name(.)"/>
<xsl:variable name="new-path" select="concat(/, $el-name)"/>

<xsl:variable name="elem-val" select="./@XSG_val"/>
<xsl:if test="string-length($elem-val) > 0">
<xsl:call-template name="gen-constraint">
<xsl:with-param name="name" select="local-name(.)"/>
<xsl:with-param name="path" select="$new-path"/>
<xsl:with-param name="type" select=""elem"/>
<xsl:with-param name="val" select="$elem-val"/>
</xsl.call-template>
</xsl:if>

<xsl.for-each select="./@*">
<!l-- do not process if node has XSG attributes-->
<xsl.if test="not(contains(local-name(.), 'XSG_'))">
<xsl:variable name="attr-val" select="."/>
<xsl.call-template name="gen-constraint">
<xsl:with-param name="name" select="local-name(.)"/>
<xsl:with-param name="path" select="$new-path"/>
<xsl:with-param name="type" select=""attr"'/>
<xsl:with-param name="val" select="$attr-val'"/>
</xsl:call-template>
</xsl:if>
</xsl:for-each>
<xsl:call-template name="process-all-children">
<xsl:with-param name="children" select="./*"/>
<xsl:with-param name="path" select="$new-path"/>
</xsl:call-template>
</xsl:for-each>
</constraints>

VVVYVYVY

FIG. 7.1

U.S. Patent Mar. 15, 2016 Sheet 8 of 16 US 9,286,275 B2

> <inserts>
> <insert name="comment_def" path="/">
> <xsd_element name="comment" type="xsd:string"/>
</insert>
</inserts>
</root>

</xsl:template>

<!-- process all children -->
<xsl:template name="process-all-children">
<xsl:param name="children"/>
<xsl:param name="path"/>
<!-- process if node has children-->
<xsl:if test="count($children) > 0">
<l-- create a xsd:.complexType tag-->

<l-- call template to process other siblings-->
<xsl:for-each select="$children">
<xsl:variable name="el-name" select="local-name(.)"/>
<xsl:variable name="new-path" select="concat($path, /',
$el-name)"/>

<xsl:variable name="elem-val" select="/@XSG_val"/>
<xsl:if test="string-length($elem-val) > 0">
<xsl:call-template name="gen-constraint">
<xsl:with-param name="name" select="local-name(.)"/>
<xsl:with-param name="path" select="$new-path"/>
<xsl:with-param name="type" select=""elem"'/>
<xsl:with-param name="val" select="$elem-val"/>
</xsl.call-template>
</xsl.if>

<xsl:call-template name="process-all-children">
<xsl:with-param name="children" select="./*"/>
<xsl:with-param name="path" select="$new-path"/>
</xsl:call-template>

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV

</xsl.for-each>

> <!-- end call template to process other siblings-->
> </xslif>

> <!-- end process if node has children-->

> </xsl:template>

FIG. 7.2

U.S. Patent Mar. 15, 2016 Sheet 9 of 16 US 9,286,275 B2

<xsl:template name="gen-constraint">
<xsl:param name="name"/>
<xsl:param name="path"/>
<xsl:param name="type"/>
<xsl:;param name="val"/>
<xsl:variable name="datatype"><xsl:value-of
select="java:DataType.getType($name,$val)"/></xsl:variable>
<xsl:element name="constraint">
<xsl:attribute name="type"><xsl:value-of
> select="%type"/></xsl.attribute>
<xsl:attribute name="name"><xsl:value-of
> select="$name"/></xsl:attribute>

VVVVVVYVVYV

v

> <xsl:attribute name="path"><xsl.value-of
> select-"$path"/></xsl attribute>
<datatype>
> <xsl:attribute name="type"><xsl:value-of
> select="$datatype"/></xsl:attribute>
> </datatype>
> </xsl.element>
> </xsl:template>
>

> </xsl:stylesheet>

FIG. 7.3

U.S. Patent

801

803

805

807

809

811

813

Mar. 15, 2016 Sheet 10 of 16

START

receiving XML file including data framework information

Y

receiving XML file including final data constraint information

v

reading the data framework information and the final data
constraint information

Y

generating a root element

Y

identifying the elements and their associated child
elements

v

processing elements and child elements to generate an
associated XML element that contains relevant data
properties defining an associated xsd element for each
element

v

generating a schema

FIG. 8

US 9,286,275 B2

U.S. Patent Mar. 15, 2016 Sheet 11 of 16 US 9,286,275 B2

Process for Generating Schema

>
> <xsl:stylesheet xmins:xs|="http://www.w3.0rg/1999/XSL/Transform"
> xmins:;java="http://xml.apache.org/xalan/java"

> version="1.0">

> <xsl:output method="xml" indent="yes"/>

> <xsl:param name="constraint-document" />

> <l-- root node-->

> <xsl-template match="/">

>

> <xsl:element name="xsd_schema">

> <xslattribute

> name="xmins_xsd">http://www.w3.0ra/2001/XML Schema</xsl:attribute>
>

> <xslvariable name="namespaces"

> select="document({normalize-space($constraint-document))/root/namespaces/namespace"/>
>

> <xslvariable name="xmins_jaxb" select="$namespaces[@name =
> 'xmins_jaxb')/@value"/>

> <xslif test="string-length($xmins_jaxb) > 0">

> <xsl:attribute name="xmins_jaxb"><xsl:value-of

> select="$xmins_jaxb"/></xsl:attribute>

> <fxslif>

>

> <xsl:variable name="xmins_xjc" select="$namespaces[@name =

> 'xmins_xjc'J/@value"/>

> <xslif test="string-length($xmins_xjc) > 0">

> <xsl:attribute name="xmlns_xjc"><xsl.value-of

> select="%$xmins_xjc"/></xsl:attribute>

> </xslif>

>

> <xsl:variable name="jaxb_version" select="$namespaces[@name =
> 'jaxb_version'//@value"/>

> <xslif test="string-length($jaxb_version) > 0">

> <xsl.attribute name="jaxb_version"><xsl.value-of
> select="$jaxb_version"/></xs|.attribute>
> </xslif>

>

> <xsl:variable name="jaxb_extensionBindingPrefixes"

> select="$namespaces[@name = 'jaxb_extensionBindingPrefixes'|/@value"/>
> <xsl:if test="string-length($jaxb_extensionBindingPrefixes) > 0">

> <xsl.attribute

> name="jaxb_extensionBindingPrefixes"><xsl:value-of

> select="$jaxb_extensionBindingPrefixes"/></xsl.attribute>

> </xslif>

>

> <xsl:copy-of

> select="document(normalize-space($constraint-document))/root/inserts/insert[@path
> = I/I]/*II/>

FIG. 9.1

U.S. Patent Mar. 15, 2016 Sheet 12 of 16 US 9,286,275 B2

> <xsl:for-each select="*">
> <xsl:element name="xsd_element">
> <xsl:attribute name="name"><xsl:value-of
> select="local-name(.)"/></xsl:attribute>
> <xskif test="count(./*) > 0">
> <xsl:attribute name="type">XSG_<xsl:value-of
> select="local-name(.)"/></xsl:attribute>
</xsl.if>
<xsl:if test="count(./*) = 0">
<xsl:attribute name="type">xsd:string</xsl:attribute>
</xsl:if>
</xsl:element>
</xsl:for-each>

\"

<xsl:for-each select="*">
<xsl:variable name="el-name" select="local-name(.)"/>
<xsl:variable name="new-path" select="concat('/, $el-name)"/>
<xsl:call-template name="process-all-children">

<xsl:with-param name="children" select="./*"/>

<xsl:with-param name="path" select="$new-path'/>
</xsl:.call-template>

</xsl:for-each>

VVVVVVVVVVVVVVYV

> <xsl:variable name="attr-constraints"
> select="document(normalize-space($constraint-document))/root/constraints/
constralnt[@type-'attr]"/>
<xsl:variable name="attr-constraints-refs"
> select "$attr-constraints/datatype[@type="ref]"/>
<xsl:copy-of select="%attr-constraints-refs/*"/>

>

> </xsl:element>
>

> </xsltemplate>
>

> <!-- process all children -->

> <xsltemplate name="process-all-children">

> <xslparam name="children"/>

> <xsl:param name="path"/>

> <l-- process if node has children-->

> <xskif test="count($children) > 0">

> <l-- create a xsd:complexType tag-->

> <xsl.element name="xsd_complexType">

> <xsl:attribute name="name">XSG_<xsl:value-of
> select="local-name($children[1]/..)"/></xsl:attribute>
> <xsl:element name="xsd_sequence">

> <!I-- call template to process like siblings-->

> <xsl:call-template name="process-like-siblings">
> <xsl:with-param name="siblings" select="$children"/>
> <xsl:with-param name="path" select="$path"/>

FIG. 9.2

U.S. Patent Mar. 15, 2016 Sheet 13 of 16 US 9,286,275 B2

> </xsl.call-template>
> <xsl.copy-of
> select="document(normalize-space($constraint-document))/root/inserts/insert[@path
> = $path]/™"/>
> </xsl.element>
> <l-- create attributes for each xsd:complexType tag-->
> <xsl.for-each select="./@*">
<xsl:variable name="attr_name" select="local-name(.)"/>
<xsl:variable name="attr_val" select="."/>
<xsl:if test="not(contains($attr_name,'’XSG_"))">
<xsl:element name="xsd_attribute">
<xsl:attribute name="name"><xsl.value-of
select="3attr_name"/></xsl:attribute>
<xsl:variable name="attr_type" select="xsd_date"/>
> <xsl:variable name="attr-constraints"
> select="document(normalize-space($constraint-document})/root/constraints/
constraint{@type="attr'}"/>
> <xsl:variable name="constraint-path"
> select="$attr-constraints[@path=string($path)]"/>

VVVVVVYV

> <xsl:variable name="constraint-path-val"
> select="$constraint-path/@path"/>

> <xsl:variable name="constraint-attr-name"
> select="$constraint-path/@name"/>

> <xsl.variable name="datatype"

> select="$constraint-path/datatype/@type"/>

> <xsl.variable name="dataname"

> select="$constraint-path/datatype/@name"/>
> <xsl:if test="($attr_name = $constraint-attr-name)">

> <xsl:attribute name="type"><xsl:value-of

> select="$datatype'/></xsl.attribute>

> </xsl:if>

>

> <xsl.if test="%$datatype = 'ref">

> <xsl.attribute name="type"><xsl:value-of

> select="$dataname'/></xsl:attribute>

> </xsl:if>

>

>

> <xsl:if test="not($attr_name = $constraint-attr-name)">
> <xsl:attribute name="type"><xsl:value-of

> select="java:DataType.getType($attr_name,$attr_val)"/></xsl:attribute>
> </xsl.if>

FIG. 9.3

U.S. Patent Mar. 15, 2016 Sheet 14 of 16 US 9,286,275 B2

<xsl:if test="string-length('$attr_val') > 0">
<xsl:attribute name="use">required</xsl:attribute>

</xsl:if>
</xsl:element>
</xsl:if>

</xsl:for-each>

</xsl.element>

<l-- end create xsd:complexType tag-->

<l-- call template to process other siblings-->
<xsl:for-each select="$children">
<xsl:variable name="el-name" select="local-name(.)"/>
<xsl:variable name="new-path" select="concat($path, ',
$el-name)"/>
<xsl.call-template name="process-all-children">
<xsl:with-param name="children" select="./*"/>
<xsl:with-param name="path" select="$new-path"/>
</xsl.call-template>
</xsl:for-each>
<l-- end call template to process other siblings-->
</xsl:if>
<!-- end process if node has children-->
</xsl:template>

<!-- process like siblings-->
<xsl:template name="process-like-siblings">
<xsl:param name="siblings"/>
<xsl:param name="path"/>
<xsl:variable name="category-name" select="$siblings[1)/@name"/>
<!-- create xsd:element tag for each siblings-->
<xsl:for-each select="$siblings">
<xsl:variable name="el-name" select="local-name(.)"/>
<xsl:variable name="new-path" select="concat($path, '/,
$el-name)"/>
<xsl:element name="xsd_element">
<xsl:attribute name="name"><xsl:value-of
select="local-name(.)"/></xsl:attribute>
<xsl:if test="count(./*) > 0">
<xsl:attribute name="type">XSG_<xsl.value-of
select="local-name(.)"/></xs!:attribute>
<xsl:variable name="count" select="$siblings[1)/@XSG_count"/>
<xsl:if test="number($count) > 1">
<xsl:attribute name="minOccurs">1</xsl.attribute>
<xsl:attribute name="maxOccurs">unbounded</xsl:attribute>
</xsl:if>
</xsl.if>
<xsl:variable name="elem-constraints"

VVYVY

FIG. 9.4

U.S. Patent Mar. 15, 2016 Sheet 15 of 16 US 9,286,275 B2

> select="document(normalize-space($constraint-document))/root/constraints/
constraint{@type='elem']"/>

> <xsl:variable name="constraint-path"

> select="$elem-constraints[@path=string($new-path)]"/>

> <xsl:variable name="constraint-path-val"

> select="$constraint-path/@path"/>

> <xsl:variable name="constraint-attr-name"

> select="$constraint-path/@name"/>

>

> <xsl:if test="count(./*) = 0">

> <xsl:if test="$constraint-path-val = $new-path">

> <xsl:variable name="datatype"

> select="$constraint-path/datatype/@type"/>

>

> <xsl.if test="%datatype = 'local"">

> <l--<xsl:attribute name="type"><xsl:value-of

> select="$datatype'/></xsl:attribute>-->

> <xsl:.copy-of select="$constraint-path/datatype/*"/>
> </xsl:if>

>

> <xsl:if test="starts-with($datatype, 'xsd:")">

> <xsl:attribute name="type"><xsl:value-of

> select="$datatype'/></xsl.attribute>

>

> <xsl:variable name="xsg_val" select="/@XSG_val"/>
> <xsl.if test="not($constraint-path-val = $new-path)">
> <xsl:attribute name="type"><xsl:value-of

> select="java:DataType.getType($el-name, $xsg_val)"/></xsl:attribute>
> </xsl:if>

> </xsl.if>

> </xsl.if>

> </xsl:if>

> </xsl.element>

> </xsl:for-each>

> <!-- end create xsd.element tag for each siblings-->

> </xsl:template>

>

> </xsl:stylesheet>

FIG. 9.5

U.S. Patent Mar. 15, 2016 Sheet 16 of 16 US 9,286,275 B2

—1000
1014
1012
‘
— Y~
1010
Fig. 10A
1000
/1022 /10?-4 /1026 /1014
PROCESSOR(S) MEMORY FIXED DISK| | N er e
A A x 'y
1020
- v ' / X
< A A A ry i »
1004 1010 1012 1030 1040
A / A 4 / A 4 / Y / ,/

NETWORK
DISPLAY | |KEYBOARD| | MOUSE | |SPEAKERS| |~ oonoc

Fig. 10B

US 9,286,275 B2

1
SYSTEM AND METHOD FOR
AUTOMATICALLY GENERATING XML
SCHEMA FOR VALIDATING XML INPUT
DOCUMENTS

BACKGROUND OF THE INVENTION

XML (EXtensible Markup Language) is a self-descriptive
markup language that is finding ever wider application as a
data transmission and processing tool. XML is efficient at
describing and defining data and is therefore used ever
increasingly in data intensive applications. In this way XML
is different from HTML, which was designed for displaying
data.

XML data can be readily transmitted between computers
using any type of data transmission media. This XML data
can be processed using computer programs and other suitably
configured applications. Commonly, an XML file is received
by an application and processed to generate an output. For
example, in one implementation, XML can be used to provide
inventory information. Such information can be provided in
the form of an XML compliant document (referred to herein
as and XML document of xml.doc). In one implementation,
such information could, for example, be formatted as follows:

<Camera>
<name>Canon-Sure-Shot-Z155</name>
<f-stop>4.8-11.7</f-stop>
<focal length>37-155mm zoom</ focal length >
<cost>$318.00USD</cost>

</Camera>

This simplified example of an XML document provides an
illustration of inventory information relating to a camera. In
an XML document, the data items are formatted as parts of
XML elements, with XML, documents containing one or
more such elements. In XML, a data item is “wrapped”
between start/end tags to form an XML element. For
example, a start tag “<name>" and an end tag

“</name>" wrap the data element “Canon-Sure-Shot-Z155” to form an
XML element “<name>Canon-Sure-Shot-Z155</name>".

A more complex element can be defined using, for
example, an element defined by <camera> . . . </camera>.
Methods and formats used to describe XML data are, of
course, well known to those having ordinary skill in the art
and so will not be discussed in detail here.

Using the above-described example, the XML information
conforms to an XML data structure. As used here, an XML
data structure refers to the arrangement and organizational
format of “empty” data elements. Such structure is defined by
the arrangement and format that defines the relationship of
elements to each other within a given XML document. Again,
using the above-described example, the structure of the XML
document can be formatted as follows:

<Camera>
<name> ... </name>
<f-stop> ... </f-stop>
<focal length> ... </ focal length >
<cost> ... </cost>
</Camera>

15

20

30

40

45

50

60

65

2

The foregoing simplified example defines an example data
framework that defines a data structure for the example docu-
ment.

In many implementations, XML documents are used to
provide data to applications that perform various operations
using the XML data. Commonly, such applications are con-
figured to receive the XML data in a given order and having a
specified format. If the data is provided in an incorrect order
or having an improper format, it may be unusable by an
application. Improperly configured XML data can cause
application programs to fail or crash or cause other undesir-
able outcomes. Under such circumstances the XML docu-
ment (and associated data) are considered “invalid”. Conse-
quently, applications are commonly equipped with small
programs that “validate” received XML documents. If the
XML documents contain XMI data in the proper order and of
the correct format it is said to be valid and the application can
operate on the data. One approach used to validate XML
documents is to use an XML schema (also referred to as .xsd
files) to validate the XML data. The validation schema can be
included as part of the application or used as an add-on
validation module. XML schema are used to describe the
structure of XML documents. As is known to those having
ordinary skill in the art, XML schema are useful for defining
elements or attributes that can appear in a document. XML
schema can be used to define whether elements are child
elements and the number and order of child elements. XML
schema can also define whether an element is empty or can
include text and can also define data types for elements and
attributes as well as defining default and fixed values for
elements and attributes. These attributes are quite useful for
defining and validating XMI, documents.

However, in common usage, the data and structure of XML
documents are constantly changing. Additionally, each
change of data or structure typically necessitates a corre-
sponding change in the associated XML schema. In the cur-
rent art, such schema must be changed or rewritten by hand to
implement the changes. In the short example provided herein
above such changes may be relatively simple to effectuate.
However, most validation schema are very long with many
elements and the process of carefully and accurately gener-
ating suitable schema can be extremely time consuming.
Using conventional processes generating accurate schema
capable of validating XML documents is a laborious, meticu-
lous, and time consuming process.

SUMMARY OF THE INVENTION

Broadly speaking, the invention relates to techniques, sys-
tems and apparatus for automatically generating schema
without the need for recoding by hand. In particular, embodi-
ments of the invention can automatically generate schema
using an initial documents constructed in an XML compatible
format.

The invention can be implemented in numerous ways,
including a system, an software module, a method, or a com-
puter readable medium as well as other implementations.
Several embodiments of the invention are discussed below.

One embodiment of the invention is directed to a method
for generating XML schema. Such method involves the
operations of providing an initial XML document that
includes raw XML data comprising data items arranged in
XML data elements and analyzing the XML document to
identify XML data structures and therefrom generating a data
framework that corresponds to the format of the data struc-
tures in the XML document. The method involves analyzing
the data items of the initial XML document to determine data

US 9,286,275 B2

3

constraints based on the data items. XML schema are then
generated based on the data framework generated and the data
constraints determined from the raw xml data.

In another embodiment, the disclosure teaches a computer
program product embodied in a computer readable media that
includes code for generating XML schema. The computer
program product includes code for receiving an initial XML
document that that includes raw XML data comprising data
items arranged in XML data structures. The product includes
code for analyzing the XML document to identify the XML
data structures. The program code generates a data frame-
work associated with the format of the data structures in the
XML document and includes code for analyzing data items
from the initial XML document and determining XML data
constraints based on the data items. The code also includes
instructions for generating XML schema based on the data
framework generated and the XML data constraints deter-
mined from the data items.

In another embodiment the principles of the present inven-
tion enable a computer system. The computer system includ-
ing at least one central processing unit (CPU), memory, and
user interface in combination configured to include an XML
structure analyzer for analyzing a received initial XML docu-
ment, wherein said analyzing includes identifying the XML
data elements of the initial XML document and generating a
data framework associated with a data structure for the XML
data elements of the initial XML document. Additionally, the
system includes a default constraint generator for analyzing
the raw XML data from the initial XML document and deter-
mining XML data constraints for data items based on the
XML raw data. The system includes a data constraint merger
for receiving at least one of the XML data constraints from the
data constraint generator and a set of externally supplied data
constraints and for outputting a final data constraint file that is
input into a system XML schema generator that receives the
data structures from the XML structure analyzer and final
data constraint file from the data constraint merger and gen-
erates an XML schema associated with said data structures
and final data constraint file.

In another embodiment, a computer module is disclosed.
The module comprising an XML structure analyzer for ana-
lyzing a received initial XML document that includes raw
XML data comprising data items arranged in XML data ele-
ments, wherein said analyzing includes identifying the XML
data elements of the initial XML document and generating a
data framework associated with a data structure for the XML
data elements of the initial XML document. The module
further includes a default constraint generator for analyzing
the raw XML data from the initial XML document and deter-
mining XML data constraints for data items based on the
XML raw data. A data constraint merger is included for
receiving at least one of the XML data constraints from the
data constraint generator and a set of externally supplied data
constraints and for outputting a final data constraint file. Also,
an XML schema generator is included for receiving the data
structures from the XML structure analyzer and final data
constraint file from the data constraint merger and generating
an XML schema associated with said data structures and final
data constraint file.

In another embodiment, another module is disclosed. This
module includes an XML structure analyzer for analyzing a
received initial XML document that includes raw XML data
comprising data items arranged in XML data elements,
wherein said analyzing includes identifying the XML data
elements of the initial XML document and generating a data
framework associated with a data structure for the XML data
elements of the initial XML document. The module further

10

15

20

25

30

35

40

45

50

55

60

65

4

includes a default constraint generator for analyzing the raw
XML data from the initial XML document and determining
XML data constraints for data items based on the XML raw
data. An XML schema generator is included for receiving the
data structures from the XML structure analyzer and default
data constraint file from the default constraint generator and
generating therefrom an XML schema associated with said
data structures and final data constraint file.

Other aspects and advantages of the invention will become
apparent from the following detailed description, taken in
conjunction with the accompanying drawings, illustrating by
way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the
following detailed description in conjunction with the accom-
panying drawings, wherein like reference numerals designate
like structural elements, and in which:

FIG. 1is asimplified block diagram illustrating an example
application program suitable for executing an XML schema
generated in accordance with the principles of the invention.

FIG. 2 is a simplified block diagram depicting one imple-
mentation of a system embodiment for automatically gener-
ating schema in accordance with the principles of the inven-
tion.

FIG. 3 is aflow diagram that describes one method embodi-
ment of the invention.

FIG. 41s aflow diagram that describes one method embodi-
ment for analyzing the structure of an XML file in accordance
with one embodiment of the present invention.

FIG. 5.1-5.2 depicts a method embodiment enabling a
structure analyzer implemented as an XSLT spreadsheet in
accordance with the principles of the invention.

FIG. 61is a flow diagram that describes one method embodi-
ment for generating a set of default constraints from an initial
XML document in accordance with one embodiment of the
present invention.

FIG. 71-7.3 depicts a method embodiment enabling
default constraint generation implemented as an XSLT
spreadsheet in accordance with the principles of the inven-
tion.

FIG. 8 describes a simplified flow diagram illustrating an
example mode of operation for one embodiment of XML
schema generation in accordance with the principles of the
invention.

FIG. 9.1-9.5 depicts a method embodiment enabling XML
schema generation implemented as an XSLT spreadsheet in
accordance with the principles of the invention.

FIGS. 10A and 10B illustrate an example of a computer
system that may be used in accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to techniques, systems, and modules
for automatically generating XML schema capable ofuse for
validating XML documents. Embodiments of the invention
are discussed below with reference to FIGS. 1-10B. However,
those skilled in the art will readily appreciate that the detailed
description given herein with respect to these figures is for
explanatory purposes as the invention extends beyond these
limited embodiments.

In accordance with one aspect of the invention a typical
application for implementing an XML schema is described.
FIG. 1 is a simplified block diagram illustrating an applica-
tion program 100 for use in accordance with the principles of
the invention. The program 100 includes an example process

US 9,286,275 B2

5

102 for operating on XML documents 101 supplied to the
program 100. In the depicted embodiment a validator 103
(e.g., a validation program) is used to validate XML docu-
ments 101 provided to the program 100. The validator 103
compares the data structure and the format of the data ele-
ments of the XML document 101 with an XML schema 104
(also provided to the validator) to determine if the structure
and format of the content of the XML document 101 is
“valid” (i.e., correctly configured and structured) to operate in
the process 102. Generally, this means that the structure and
format of the content of the XML document 101 matches that
of the XML schema 104. The validator 103 outputs a valid
XML document 105. The inventor notes that although the
depicted validator 103 forms part of the program 100, this
need not be the case. A validator 103 can be separate from the
process 102. The validator 103 simply provides the validated
XML file 105 to the process 102.

FIG. 2 depicts one implementation of a system 200 for
automatically generating schema in accordance with the prin-
ciples of the invention. In the depicted embodiment of the
invention, the system can be implemented as a software mod-
ule 202. As persons of ordinary skill will be aware, the system
can be implemented in many other configurations. For
example, the system can form part of an operating system, be
implemented as part of an applications program, additionally,
the system can be implemented as hardware. In accordance
with some embodiments of the invention, the system is imple-
mented as a software module 210 that can be employed to
generate XML schema. As alluded to above, in one embodi-
ment, the module can be employed as part of an application or
as part of some other program. Additionally, as depicted here,
in some embodiments the module 210 forms part of a com-
puter system. The module 210 is configured to receive an
XML file 201 and use the file 201 to generate an associated
XML schema 220 that can be used to validate other XML
files. Such validation can, for example, be used to validate
other XML files intended for input into various application
programs.

An XML document 201 containing XML data structures
and associated XML data items (also referred to herein as raw
XML data) is provided to the module 210. The module 210
includes an XML structure analyzer 212 capable of receiving
an XML document and transforming the document into a data
framework that defines the data structure for the XML docu-
ment 201. Generally, the data framework comprises the
arrangement and structure of the empty elements comprising
the XML document 201. This framework information is out-
put 2120 to an XML schema generator 218. Additionally, the
module can include a default constraint generator 214. The
default constraint generator 214 is capable of receiving an
XML document, identifying the data items of the XML docu-
ment 201 and defining a set of properties for those data items.
For example, one set of properties that can be identified and
defined for the data items is the data types (e.g., string,
numeric (e.g., integer, decimal, etc.), binary, boolean, date,
time, anyURI, double, float, NOTATION, Qname, as well as
many other “types”) for each of the data items. These prop-
erties can be used to identify specific properties for each data
item and can generate constraints for each data item. This
constraint information is output from the default constraint
generator 214 as a default constraint file 2140 (e.g., as an
XML file). The default constraint file 2140 can be received by
a constraint merger 216 which provides selected constraint
information to the XML schema generator 218. The schema
generator 218 uses the selected constraint information
together with the data structure to translate an XML docu-
ment 201 into an XML schema associated with the XML

10

15

20

25

30

35

40

45

50

55

60

65

6

document 201. Additionally, a user can supply additional
constraint information in the form of an externally generated
constraint file 219 that is also input into the constraint merger
216. The constraint merger 216 can choose to select the
default constraint file 2140 or the externally generated con-
straint file 219 for input into the XML schema generator 218.
Alternatively, the constraint merger 216 can merge the default
constraint file 2140 with the externally generated constraint
file 219 for to generate an input for the XML schema genera-
tor 218.

Alternatively, the module 210 can be configured so that the
default constraint file 2140 is received directly by the schema
generator 218 (see the dashed line 2140') without using the
merger 216 and without the externally generated constraints
219. In such case no externally generated constraints 219 are
used and the merger 216 is not required.

FIG. 3 is a flow diagram that describes one typical method
embodiment of the invention. The process flow 300 can begin
by providing an initial XML document (Step 301). This docu-
ment is typically a correctly formatted document that would
be suitable for processing by the desired applications. For
example, the XML document can be provided to a software
module or other system embodied herein for generating an
XML schema. The initial XML document is a properly for-
matted XML document configured in compliance with an
XML format. The initial XML document typically includes.
XML data structures and raw XML data (XML data items)
that will be used in generating an associated XML schema.
Providing the initial XML document generally includes pro-
viding the initial XML document to both an XML structure
analyzer (e.g., 212) and an XML default constraint generator
(e.g., 214). The initial XML document is analyzed to identify
the XML structure of the document (Step 303). This can be
accomplished using an XML structure analyzer (e.g., 212).
The XML elements are identified and the relationships
between the elements are discerned. A data structure frame-
work associated with data elements of the initial XML docu-
ment is then generated using the information obtained from
the analysis of the initial XML document (Step 305). This
framework typically defines a pattern of empty XML data
elements configured in an arrangement analogous to that of
the initial XML document. The output data structure frame-
work 307 can be output as an XML document (XML.doc) for
later use in the process.

The initial XML document is also analyzed to identify the
XML data elements (raw XML data) of the document (Step
311). This can be done at the same time as steps 303, 305 or
at a different time. Typically, this analysis can be accom-
plished using an XML default constraint generator (e.g.,
214). The XML data items are identified and data properties
pertaining to the data items are ascertained. For example, the
data types for the data items are identified and the data
attributes are also identified. A set of default data constraints
is then generated for each data item (Step 313). The default
data constraints are generated based on the data properties of
the data items in the initial XML document. Commonly, the
default data constraints include type and attribute information
as well as other data property constraints. The output set of
default data constraints 315 can also be output as an XML
document. Example data constraints include but are not lim-
ited to attributes that indicate target information (i.e., an ele-
ment or attribute to which the constraint has to be applied).
For example, the type of target can be identified. In one
example, target can be identified as type element
(type="elem”) or as type attribute (type="attr’’). The name of
the target can be identified (e.g., name="orderDate”). A path-
name specifying a path of the target from the root (/) can be

US 9,286,275 B2

7

identified (e.g., path="/purchaseOrder”). In one limited
example implementation attributes and elements can be con-
strained in accordance with the following example formats.
In one example, attribute information can be constrained as
follows: <constraint type="attr”” name="orderDate” path="/
purchaseOrder”>. In another example, element information
can be constrained as follows: <constraint type="elem”
name="quantity” path="/purchaseOrder/items/item/quan-
tity””>. As can be appreciated by those of ordinary sill in the art
many other constraint formats can be utilized and those
shown are merely illustrative rather than limiting. In another
example, a datatype element can hold default datatype infor-
mation inside a type attribute, in one example, formatted as
follows:

(e.g., <datatype type="xsd:string”> </datatype>).

As can be appreciated by those of ordinary skill in the art,
many other constraint formats can be utilized and those
shown above are merely intended to be illustrative rather than
limiting.

In one embodiment, the output data structure framework
307 and the output set of default data constraints 315 are used
to automatically generate a schema without any further user
input beyond the introduction of the initial XML document
(Step 325). In one embodiment, the output data structure
framework 307 and the output default set of data constraints
315 (dashed line 316) are received by a schema generator
(e.g., 218) and processed to automatically generate an XML
schema 330 capable of validating XML files.

In another embodiment, an additional externally generated
set of constraints can be provided (Step 317). An externally
generated constraint file can be provided by a user (or gener-
ated by a machine in accordance with a predetermined set of
conditions). For example, for a zip code constraint can be
confined to a type=integer, but also constrained to only vali-
date data items having five entries (i.e., “90505”) or alterna-
tively be constrained to validate data items having nine entries
of the XXXXX-XXXX format (i.e., “90505-1405”). The
externally generated set of constraints 317 and the default
constraints 315 can be processed together to obtain a selected
set of constraints (Step 320). In one instance, the two (or
more) sets of constraints 315, 317 can be input into a con-
straint merger (e.g., 216) which can select either of the con-
straints to provide a selected output constraint 321 (typically
in the form of an XML file) which is used with the output data
structure framework 307 to automatically generate an XML
schema 330 capable of validating XML files (Step 325). In a
simple case, for example, a merger operating at Step 320 can
simply select the set of constraints 315, 317 that is externally
generated by a user (e.g., 317) as the selected output con-
straint 321.

In addition to the above approach, another embodiment can
process the externally generated set of constraints 317 and the
default constraints 315 together to obtain another selected set
of'constraints 321 (Step 320). In this case, the constraints 315,
317 canbe input into a constraint merger (e.g., 216) which can
merge the constraints 315, 317 to provide a selected output
constraint 321 in the form of a merged file (typically in an
XML format) that includes data from both files. This merged
file is used with the output data structure framework 307 to
automatically generate an XML schema 330 capable of vali-
dating XML files (Step 325). In a simple case, for example,
the externally generated constraint information can be used to
fill in any gaps in a default constraint document. Additionally,
in conditions where constraint information in the default con-
straint file is in conflict with constraint information contained
in the externally generated constraint file, conflicts can be
resolved in accordance with a predetermined conflict resolu-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion scheme. For example, a priority scheme can be imple-
mented. Or the constraint information contained in an exter-
nally generated constraint file can be chosen over the default
information.

The following discussion describes to one example
embodiment of a structural analyzer (e.g., 212) and an asso-
ciated mode of operation. In general, a structural analyzer
reads an input XML document, analyzes the structure of the
XML data elements, and generates a resultant XML, docu-
ment that contains structural information in the form of a
framework. This framework is generally conceived of as
comprising XML data elements, attribute information, and
selected metadata concerning the cardinality of data elements
and data attributes.

FIG. 4 describes a simplified flow diagram 400 illustrating
an example mode of operation for one embodiment of a
structural analyzer (e.g., 212) operating to accomplish opera-
tions 303, 305 of FIG. 3.

The initial XML fileis read (Step 401) and a “root element™
is generated for the structure (Step 403). In one embodiment
a system parser can be used to generate the root element. The
“child” elements of the input XML file are identified (Step
405). Since “sibling” data elements have the same data format
as other associated siblings (the exact content of the data can
vary, but the data format is the same) only the first sibling need
be analyzed to identify the data properties needed to specify
the data format for any of the siblings. And since the purpose
of the validation schema is to confirm that an input XML
document has a correct format, such analysis of the first
sibling is sufficient. Each first sibling can be processed to
determine its name, attributes, number of attributes (attribute
count), value, and element count (Step 407). Commonly, the
redundant children need not be analyzed since they specify
the same data format as the other related siblings. The result-
ing output is a data structure that captures the organizational
format of the initial XML file (Step 409).

Inoneillustrative example, Table 1 provides an input initial
XML file.

TABLE 1

<?XML version="1.0" encoding="UTF-8"?>
<purchaseOrder orderDate=*1999-10-20"">
<items>
<item partNum="“242-NO” >
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity>
<USPrice>19.99</USPrice>
</item>
<item partNum="*243-NO” >
<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>
</item>
</items>
</purchaseOrder>

The initial XML file of Table 1 can be used to generate the
following resultant framework (see, Table 2) for the data
elements associated with the initial XML file.

TABLE 2

<purchaseOrder orderDate="1999-10-20” XSG__attrcount_ orderDate="1"
XSG_count="1">
<items XSG__count="*1">
<item partNum="242-NO” XSG__attrcount_ partNum="2"
XSG__count="2">
<productName XSG__val="Nosferatu - Special Edition (1929)”
XSG__count="1"/>

US 9,286,275 B2

9
TABLE 2-continued

<quantity XSG__val=*5" XSG_ count="1"/>
<USPrice XSG__val=*19.99” XSG__count="1"/>
</item>
</items>
</purchaseOrder>

The root element is generated as, for example, purchase-
Order. The structure of the above framework includes: <pur-
chaseOrder orderDate="1999-10-20” XSG _attrcount_order-
Date=“1" XSG_count="1"> to describe the element:
“purchaseOrder” in its entirety.

For example, orderDate=<1999-10-20” describes the
attribute called orderDate. Also, XSG_attrcount_order-
Date—describes the cardinality (number) of attribute order-
Date for all elements of type purchaseOrder in the XML
document. XSG_count="1" describes the cardinality of ele-
ments of type purchaseOrder in the XML document. The first
data element for item partNumber (i.e., “242-NO”) has been
kept and defined. These same definitions and framework
parameters apply to all other sibling data elements for item
partNumber (e.g., “243-NO”) which has already been defined
as a framework element. Therefore, the item partNumber
relating to “243-NO” need not be analyzed. The same sort of
element definition is conducted for the other data elements
e.g., productName; quantity, and USPrice.

FIG. 5 describes one embodiment of, for example, an
XSLT style sheet that can be used to execute the process
illustrated in FIG. 4 or the operate the structural analyzer
(e.g., 212) executing operations 303, 305 or FIG. 3.

The stylesheet embodiment of FIG. 5 represents one
approach to generating the structural framework of an initial
XML document. As is known to those having ordinary skill in
the art, many other approaches can be used. The embodiment
of FIG. 5 begin by identifying a root (/) element of the input
XML document and designates that element as the “current
element”. All of the “child” elements in the “current element”
are processed and the first sibling is identified. The first sib-
ling is then processed to generate an XML element contain-
ing, at least in this embodiment, the following information:

Name, here containing the element name of the first sibling
(purchaseOrder);

Attributes (e.g., orderDate=1999-10-20");

Attribute count (i.e., cardinality information for each
attribute). Example, shown here can include:

XSG _attrcount_orderDate="1"

Also, value (i.e., the value of text node elements, if
present). For example, a value like:
XSG_val=“Nosferatu—Special Edition (1929)”) for
item productName.

Also, element count (the cardinality information for each
element) can be discerned, here XSG_count="1". This
process can be repeated for all first children until all
elements (first children) of the initial XML file are vis-
ited. Such a process is one example of a process used to
generate structural information in accordance with one
embodiment of the invention.

As previously alluded to, the structure of the invention
includes a default constraint generator. FIG. 6 describes a
simplified flow diagram 600 illustrating an example mode of
operation for one embodiment of a default constraint genera-
tor (e.g., 214) operating to accomplish operations 311, 313 of
FIG. 3.

The initial XML file is read (Step 601) and a “root element”
is generated for the structure (Step 603). In one embodiment,
a system parser can be used to generate the root element. The

10

15

20

25

30

35

40

45

50

55

60

65

10

“child” elements of the input XML file are identified (Step
605). Elements are generated to contain constraint informa-
tion related to each data item of the initial XML file (Step
607). In one embodiment, these elements are referred to as
<namespaces> elements. Each data item is then associated
with a <namespace> data clement. Additionally, each
<namespace>element is configured to include a <constraint>
element (Step 609) that includes constraint information con-
cerning each data item. The data items of the initial XML file
are processed to generate associated constraint information
(Step 611). Each data item is analyzed to determine a “name”
which identifies the item by name, analyzed to determine
“attributes” which identify attributes of the data item, and
analyzed to determine a “path” that identifies a pathname of
the structure that identifies the pathname for the path of the
element in the XML structure where the attribute or element
belongs. Also, another element can be created for the con-
straint element (Step 613). This element can contain “type”
information for the generated element. In one embodiment,
such an element can be referred to, for example, as a
“datatype” element. In such case the “type” element com-
prises a single attribute that is generated (Step 615) and whose
value represents a generated data type from the initial XML
file input into the default constraint generator. This process
can be repeated for each data item in the initial XML file (step
617) to provide a complete characterization of the data items
in the initial XML file an generate a default constraint XML
document.

In general, the above process generates three blocks of
information for use in a default constraint XML file. First a
“namespaces” element can be generated from the input docu-
ment. This element can be modified to change namespace
information during generation an XML Schema (e.g., 218).

For example, having a “namespaces” element configured
as follows:

<namespaces=>
<namespace value="http://java.sun.com/XML/ns/jaxb”
name="“"XMLuns:jaxb”>
</namespace>
</namespaces>

An additional namespace can be easily added by inserting
the new namespace inside the “namespaces” element.

Also, data types can be easily modified in accordance with
the principles of the invention. For example, the following
constraint element is initially configured as follows:

<constraint type="attr”” name="orderDate” path="/purchaseOrder”>
<datatype type="xsd:date”>
</datatype>
</constraint>

This describes a generated datatype as xsd:date for order-
Date based on the “1999-10-20 content.

If a user desires to change the type for this attribute
(datatype) to be xsd:time during XML Schema generation,
then it can be changed, for example, as follows:

<constraint type="attr”” name="orderDate” path="/purchaseOrder”>
<datatype type="xsd:time”>
</datatype>

</constraint>

US 9,286,275 B2

11

This modified constraint can now be used for generating
XML Schema document in accordance with the modified
type information.

Furthermore, additional elements (comments, etc.) can
easily be added in accordance with the principles of the inven-
tion. In one example implementation, the element insertion
routine can be used to automatically introduce new elements
into a schema without having to rewrite the schema by hand.

<insert path="/" name="“comment_ def”>
<xsd__element type="xsd:string” name="“comment”>
</xsd__element>

</insert>

For example, the output XML file below is an example of
an output default constraint generated using the initial XML
file shown above in Table 1.

<?XML version="1.0" encoding="UTF-8"?>
<root>
<namespaces>
<namespace value="http://java.sun.com/XML/ns/jaxb”
name="“"XMLuns:jaxb”>
</namespace>
</namespaces>
<constraints>
<constraint type="attr” name="orderDate” path="/purchaseOrder”>
<datatype type="xsd:date’>
</datatype>
<fconstraint>
<constraint type="elem” name="“productName”
path="/purchaseOrder/items/item/productName”>
<datatype type="xsd:string”>
</datatype>
</constraint>
<constraint type="“elem” name="“quantity”
path="/purchaseOrder/items/item/quantity”>
<datatype type="xsd:integer”>
</datatype>
</constraint>
<constraint type="elem” name="USPrice”
path="/purchaseOrder/items/item/USPrice”>
<datatype type="xsd:decimal”>
</datatype>
</constraint>
</constraints>
<inserts>
<insert path="/" name="“comment__def”>
<xsd__element type="xsd:string” name="“comment’>
</xsd__element>
</insert>
</inserts>
</root>

FIG. 7 describes one embodiment of, for example, an
XSLT style sheet that can be used to execute the process
illustrated in FIG. 4 or the operate the default constraint
generator (e.g., 214) operating to accomplish operations 311,
313 of FIG. 3.

The following discussion describes a merger (e.g., 216)
and an associated mode of operation. In general, a merger
reads an input set of default constraint information (e.g.,
2140) and an input set of externally supplied constraints (e.g.,
219) and generates one of a merged set of constraints. Alter-
natively, the merger can select the default set of constraints or
the externally supplied set of constraints for output to a
schema generator (e.g., 218). In one implementation, the
externally supplied constraints provide the primary constraint
information with the default constraint information providing
ancillary information.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 8 describes a simplified flow diagram illustrating an
example mode of operation for one embodiment of an XML
schema generator (e.g., 218) operating to accomplish opera-
tion 325 of FIG. 3.

The following is a brief simplified description of schema
generation in accordance with the principles of the invention,
for example, using a schema generator (e.g., 218). The gen-
erated data framework 2120 (e.g., in the form of an XML file)
is received from the structural analyzer 212 (Step 801). At the
same time, or at a different time, the final data constraint file
(e.g., in the form of an XML file) can be received from the
merger 216 (Step 803). The two files are read (Step 805) and
a “root element” is generated for a schema (xsd file) (Step
807). Each of the elements and associated child elements are
identified (Step 809). Each element (and child element) is
processed to generate an XML element (or element set) that
contains an associated set of elements (Step 811) to define an
associate xsd element. If child elements contain further chil-
dren (not siblings), such elements are “complex elements”
and processed as such. For example, an xsd element is gen-
erated identifying the element having children as type com-
plex elements (e.g., “xsd:complexType”). A fully constructed
xsd (schema) file is then generated (Step 813).

Such processing (Step 811) typically involves scanning
each element (and child element) to define and generate an
XML schema element.

Inatypical implementation, generating for example a com-
plex element an accompanying “complexType” set (includ-
ing a type declaration and complexType definition) is gener-
ated. In illustrative example the complex set of elements can
include a declaration:

<xsd:element name="“purchaseOrder” type="__purchaseOrder”/>
and can include a complexType definition:
<xsd:complexType name="_purchaseOrder”>
<xsd:sequence™>
<xsd:element name="items” type="__items”/>
</xsd:sequence>
<xsd:attribute name="orderDate” type="xsd:date” use="“required”/>
</xsd:complexType>

In a simple element, a corresponding simple XML schema
can be generated. In the following example (having child
count=0) a declaration is defined. For example, <xsd:element
name="productName” type="XYZ"/> where XYZ—could
be of type (e.g., string; integer; decimal; boolean; date; time;
etc.). Wherein “XYZ” is selected from an externally provided
constraint document or from a generated default constraint
XML document. A preference can be given to the externally
provided constraint XML document types if they have been
supplied. Additionally, if the element includes attributes, it
can be configured, for example as follows:

<xs:element name="item”>
<xs:complexType>
<xs:attribute name="partNum” type="xs:string”/>
</xs:complexType>
</xs:element>

It should be noted, that the examples provided above are
intended as simplified examples used to illustrate certain
principles of the invention. As such they are not intended to
confine the scope or implementations of the invention. As is
known to those having ordinary skill in the art, many other
related implementation details can be implemented to accom-
plish the embodiments of the invention.

US 9,286,275 B2

13

One example of a fully operative embodiment for accom-
plishing such schema generation is depicted by the stylesheet
of FIG. 9.

It should be noted that all the processes, methods, and
systems described herein can be implemented in many dif-
ferent kinds of tools. Examples, include but are not limited to
command-line tools and servlets. Also, the principles of the
invention can be applied to ANT assembly language pro-
gramming (e.g., Ant 3.0.1) and other build tools. Also, the
inventor contemplates the application of the principles of the
present invention to JAVA Studio IDE NBM modules. The
processes described herein are well suited to implementation
in computer readable medium implementations. Also, the
principles of the present invention are well suited to network
based computer systems. For example, an XML document on
one computer provided over the internet to a remote computer
can be converted to an XML schema on the remote computer
for remote use or for return and use on the sending computer.

FIGS. 10A and 10B illustrate an example of a multi-pro-
cessor computer system 1000 that may be used in accordance
with the invention. FIG. 10A shows a computer system 1000
that includes a display 1002, screen 1004, cabinet 1006, key-
board 1010, and mouse 1012. Mouse 1012 may have one or
more buttons for interacting with a graphical user interface.
Cabinet 1006 can house a CD-ROM drive 1008, system
memory and a hard drive (see FIG. 10B) which may be
utilized to store and retrieve software programs incorporating
computer code that implements the invention, data for use
with the invention, and the like. Although CD-ROM 1008 is
shown as an exemplary computer readable storage medium,
other computer readable storage media including floppy disk,
DVD, tape, memory sticks, flash memory, system memory,
and hard drive may be utilized. Additionally, a data signal
embodied in a carrier wave (e.g., in a network including the
Internet) may be the computer readable storage medium. In
one implementation, an operating system for the computer
system 1000 is provided in the system memory, the hard
drive, the CD-ROM 1008 or other computer readable storage
medium and serves to incorporate the computer code that
implements the invention (e.g., MMU system). It is to be
remembered that the operating system is configured so it
controls all of the processors of the system. It should be noted
that other devices (e.g., printers, scanners, etc.) may be
present in the computer system 1000.

FIG. 10B shows a system block diagram of computer sys-
tem 1000 used to execute the software of an embodiment of
the invention. The computer system 1000 includes monitor
1004, keyboard 1010, and mouse 1012. Computer system
1000 further includes subsystems, such as a plurality of cen-
tral processors (CPU’s) 1022 (including cache memory
resources), system memory 1024, fixed storage 1026 (e.g.,
hard drive), removable storage 1014 (e.g., CD-ROM drive),
display adapter, sound card and speakers 1030, and network
interface 1040. The central processors 1051, for example, can
execute computer program code (e.g., an operating system) to
implement the invention. An operating system is normally
(but not necessarily) resident in the system memory 1024
during its execution. Other computer systems suitable for use
with the invention may include additional or fewer sub-
systems. Importantly, the principles of the invention can spe-
cifically be implemented on networked computer systems
having many individual computers. Such networked systems
can include local area networks (LAN’s) or a wide area net-
work (WAN’s). Particularly, the inventors contemplate com-
puter systems networked together using the Internet. Addi-
tionally, an example of a LAN is a private network used by a
mid-sized company with a building complex. Publicly acces-

10

15

20

25

30

35

40

45

50

55

60

65

14

sible WAN’s include the Internet, cellular telephone network,
satellite systems and plain-old-telephone systems (POTS).
Examples of private WAN’s include those used by multi-
national corporations for their internal information system
needs. The network may also be a combination of private
and/or public LANs and/or WANSs.

The system bus architecture of computer system 1000 is
represented by arrows 1020. However, these arrows are illus-
trative of any interconnection scheme serving to link the
subsystems. For example, a local bus could be utilized to
connect the central processor to the system memory and
display adapter. Computer system 1000 shown in FIG. 10B is
but an example of a computer system suitable for use with the
invention. Other computer architectures having different con-
figurations of subsystems may also be utilized.

The invention can use a combination of hardware and
software components. The software can be embodied as com-
puter readable code (or computer program code) on a com-
puter readable medium. The computer readable medium is
any data storage device that can store data which can there-
after be read by a computer system. Examples of the com-
puter readable medium include read-only memory, random-
access memory, CD-ROMs, magnetic tape, and optical data
storage devices. The computer readable medium can also be
distributed over a network coupled computer systems so that
the computer readable code is stored and executed in a dis-
tributed fashion.

The advantages of the invention are numerous. Different
embodiments or implementations may have one or more of
the following advantages. One advantage of the invention is
that it can be used in a networked computing environment, to
include, but not limited to a web-based network. XML docu-
ments can be remotely accessed to generate schema. Addi-
tionally, the components of the inventive system can be oper-
ated in a distributed fashion if desired. For example, an XML
structure analyzer can be located on one computer and a
default constraint generator can be located on another net-
worked computer. In another implementation, an XML docu-
ments can be provided from one networked computer to a
complete module located on yet another networked computer.

The many features and advantages of the present invention
are apparent from the written description, and thus, it is
intended by the appended claims to cover all such features
and advantages of the invention. Further, since numerous
modifications and changes will readily occur to those skilled
in the art, it is not desired to limit the invention to the exact
construction and operation as illustrated and described.
Hence, all suitable modifications and equivalents may be
resorted to as falling within the scope of the invention.

What is claimed is:

1. A method for generating XML schema comprising:

providing an initial XML document that includes raw

XML data comprising data items arranged in XML data
elements;

analyzing a structure of a portion of the XML data elements

in the initial XML document;

generating a data framework that defines a pattern of empty

XML data elements based on the structure of the portion
of analyzed XML data elements, the XML data elements
configured in an arrangement analogous to the initial
XML document;

analyzing the data items from the initial XML document;

determining data constraints based on the data items;

generating an XML schema based on the data framework
generated and the data constraints determined from the
raw XML data; and

changing at least one data type for the XML schema.

US 9,286,275 B2

15

2. The method of claim 1, wherein determining the data
constraints based on the data items includes determining type
constraints based on a type of the data items in the initial
XML document.

3. The method of claim 1, wherein determining the data
constraints based on the data items includes determining
attribute constraints based on attributes of the data items in
the initial XML document.

4. The method of claim 1, wherein the method can be
implemented to change namespace for the XML schema.

5. A method for generating XML schema comprising:

providing an initial XML document that includes raw

XML data comprising data items arranged in XML data
elements;

analyzing a structure of a portion of the XML data elements

in the initial XML document;

generating a data framework that defines a pattern of empty

XML data elements based on the structure of the portion
ofanalyzed XML data elements, the XML data elements
configured in an arrangement analogous to the initial
XML document;

analyzing the data items from the initial XML document;

determining data constraints based on the data items;

generating an XML schema based on the data framework
generated and the data constraints determined from the
raw XML data; and

atleast one of adding and removing a data element from the

XML schema.
6. A method for generating XML schema comprising:
providing an initial XML document that includes raw
XML data comprising data items arranged in XML data
elements;

analyzing a structure of a portion of the XML data elements

in the initial XML document;

generating a data framework that defines a pattern of empty

XML data elements based on the structure of the portion
ofanalyzed XML data elements, the XML data elements
configured in an arrangement analogous to the initial
XML document;

analyzing the data items from the initial XML document;

determining data constraints based on the data items,

including receiving externally supplied data constraints;
and

generating an XML schema based on the data framework

generated and the data constraints determined from the
raw XML data.

7. The method of claim 6, wherein generating the schema
further includes using the externally supplied data constraints
to generate the XML schema.

8. The method of claim 6, wherein generating the schema
further includes merging portions of the data constraints
determined from the data in the XML document and portions
of the externally supplied data constraints.

9. A non-transitory computer program product embodied
on a computer readable media including computer program
code form generating XML schema, the computer product
including:

computer program code instructions for receiving an initial

XML document that includes raw XML data comprising
data items arranged in XML data elements;
computer program code instructions for analyzing a struc-
ture of a portion of the XML data elements in the initial
XML document;

computer program code instructions for generating a data
framework that defines a pattern of empty XML data
elements based on-the structure of the portion of ana-

15

20

25

30

35

40

45

50

55

60

65

16

lyzed XML data elements, the XML data elements con-
figured in an arrangement analogous to the initial XML
document;

computer program instructions for analyzing the data items

from the initial XML document and determining XML
data constraints based on the data items and receipt of
externally supplied data constraints; and

computer program code instructions for generating an

XML schema based on the data framework generated
and the data constraints determined from the data items.

10. The non-transitory computer program product of claim
9, wherein the computer program code instructions for gen-
erating the schema further includes using the externally sup-
plied data constraints to generate the XML schema.

11. The non-transitory computer program product of claim
9, wherein the computer program code instructions for deter-
mining data constraints includes computer program code
instructions for receiving externally supplied data con-
straints; and

further comprising computer program code instructions for

using the externally supplied data constraints to generate
the XML schema.

12. The non-transitory computer program product of claim
9, wherein the computer program code instructions for deter-
mining data constraints includes computer program code
instructions for receiving externally supplied data con-
straints; and

wherein the computer program code instructions for gen-

erating the schema further includes instructions for
merging portions of the data constraints determined
from the data in the initial XML document and portions
of the externally supplied data constraints.

13. A computer system comprising:

at least one central processing unit (CPU), memory, and

user interface in combination configured to include:

XML structure analyzer for analyzing a received initial
XML document that includes raw XML data compris-
ing data items arranged in XML data elements,
wherein said analyzing includes identifying analyz-
ing a structure of a portion of the XML data elements
in the initial XML document and generating a data
framework that defines a pattern of empty XML data
elements based on-the structure of the portion of ana-
lyzed XML data elements, the XML data elements
configured in an arrangement analogous to the initial
XML document;

default constraint generator for analyzing the data items
from the initial XML document and determining
XML data constraints based on the XML raw data;

data constraint merger for receiving at least one of the
XML data constraints from the data constraint gen-
erator and a set of externally supplied data constraints
and for outputting a final data constraint file; and

XML schema generator for receiving from the XML
structure analyzer and final data constraint file from
the data constraint merger and generating an XML
schema associated with said XML data elements and
final data constraint file.

14. The computer system of claim 13 wherein the data
constraint merger receives both the XML data constraints
from the data constraint generator and the set of externally
supplied data constraints and merges both sets of data con-
straints into the final constraint file.

15. The computer system of claim 13 wherein the data
constraint merger receives both the XML data constraints
from the data constraint generator and the set of externally
supplied data constraints and selects one of the XML data

US 9,286,275 B2

17

constraints from the data constraint generator and the set of
externally supplied data constraints for output as the final data
constraint file.

16. A computer module for automatically generating XML

schema, the module comprising:

XML structure analyzer for analyzing a received initial
XML document that includes raw XML data comprising
data items arranged in XML data elements, wherein said
analyzing includes analyzing a structure of a portion of
the XML data elements in the initial XML document and
generating a data framework that defines a pattern of
empty XML data elements based on-the structure of the
portion of analyzed XML data elements, the XML data
elements configured in an arrangement analogous to the
initial XML document;

default constraint generator for analyzing the data items
from the initial XML document and determining XML
data constraints based on the XML raw data;

data constraint merger for receiving at least one of the
XML data constraints from the data constraint generator

5

15

18

and a set of externally supplied data constraints and for
outputting a final data constraint file; and

XML schema generator for receiving the data structures

from the XML structure analyzer and final data con-
straint file from the data constraint merger and generat-
ing an XML schema associated with said data structures
and final data constraint file.

17. The computer module of claim 16 wherein the data
constraint merger receives both the XML data constraints
from the data constraint generator and the set of externally
supplied data constraints and merges both sets of data con-
straints into the final data constraint file.

18. The computer module of claim 16 wherein the data
constraint merger receives both the XML data constraints
from the data constraint generator and the set of externally
supplied data constraints and selects one of the XML data
constraints from the data constraint generator and the set of
externally supplied data constraints for output as the final data
constraint file.

